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CIDNP has been applied in photochemistry to determine precursor spin multi- 

plicities, reaction mechanisms, and the nature of free radical and diamagnetic 

reaction intermediates, mainly in the reactions of peroxides, ketones, alde- 

hydes, and azo compounds*). 

In the present paper, the mechanism of the photochemical decomposition of 

trimethylstannyl-diethylamine has been studied using CIDNP. The unfiltered 

light of a 1000 W Hg-Xe compact arc lamp (HANOVIA 977B-1) was focussed with 

two quarts lenses onto a quartz rod which guided the light to the sensitive 

region of the NMR spectrometer (BRUKER HFX 90). In order to obtain an improved 

signal-to-noise ratio, the Fourier transform technique was applied; this gives 

qualitatively the same results as the CW technique. 

From PMR spectra recorded after complete decomposition of the stannylamine 

in benzene-d6, the overall reaction is as follows: 

(1) 2 Me$n-NEt2 Me9Sn-SnMe9 + Et2NH + Me-CH=NEt 

Fig.1 shows a PMR spectrum taken during a 16 scan irradiation (ca. 1 min) 

of a 0.5 m solution of trimethylstannyl-diethylamine in benzene-d6. The chemi- 

cal shift is given in b values (ppm from tetramethylsilane). The assignment of 

the different line groups and the observed CIDNP effects (E = emission, A = 

enhanced absorption, N I no effect) are presented in Table I. No CIDNP effects 

other parts of the PMR spectrum. could be observed in the 
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Fig.1: CIDNP during photolysis of 0.5 m Me3Sn-NEt2 in C6D6 

The following reaction scheme is given 

2s --c Me3SnH + He-CH=NEt 

(2) Me3Sn-NEt2 -_$ Me Sne=NEt 3 
He3Sn. + Et2N* 

(3) Me3SnH + Me3Sn-NEt2 + Me3Sn-SnMe3 + Et2NH 2) 

(4a) 2 Me3Sn* ---_) Me3Sn-SnNe3 

(4b) 2 Et2N' -_) Me-CH=NEt Et2NH 
3) 

+ 

(4~) Me3Sn* + Et2N. --_j Me3SnH + Me-CH=NEt 
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Table I: CIDNP during photolysis of Me3Sn-NEt2 in C6D6 

CH3-C&=N-CH2-CH3 b - 7.4 quartet A 

CH3-CHIN-CH2-CH3 8 - 3.3 quartet A 

Me3SnE 6 - 4.8 decet A 

tCH3-CH2-)2NH 6 = 2.5 quintet E 

Me3Sn-NC-CH2-CH3) 6 = 3.0 quartet with Sn satellites N 

solvent 6 = 7.2 N 

The nuclear polarisations can be explained, if they are built up in radical 

pairs Me3Sn-=NEt2S formed by a homolytic Sn-N cleavage from singlet states of 

Me3Sn-NEt2. With the further assumptions g(Et2N*)< g(Me3Sn-) and 0<z$H2(Et2N*l 

(see Table II), Kaptein's rule gives A for the CH and CH2 protons of Me-CH=NEt 

and the hydride proton from reaction (21, and E for the CH2 protons of Et2NH 

from (4b); these effects were in fact observed Jsee Table I). Multiplet type 

polarisations from (2) are not expected because of the large g factor diffe- 

rence of Me Sn* 5) 
3 and Et2N* . 

If this interpretation is correct, radical pairs Me3Snm-NEt2F formed by free 

radical encounter (4~) should give the same CIDNP pattern as Me3Sn**NEt2S, but 

less intensive and of opposite sign 6) . Consequently, the magnitude of the CIDNP 

patterns should be increased by addition of a scavenger to remove the stannyl 

Table II: Magnetic properties of Me3Sn* and Et2N. 

Me3Sn* g = 2.017 7, aH = 0.275 mT 7) 

Et2N* g m 2.004 '1 e2 I +3.69 mT 8,**1 e3 not resolved 8,***) 

l I The g factor of Et2N* is not known, but it can be assumed that its 

value is very similar to that of t4e2N* (g . 2.0044')) . 

l *) In 81 a hyperconjugative mechanism is assumed for explaining the CH2 

splitting which gives a positive sign for e2. 

l **l It can be seen from the ESR spectrum of Et2N* given in 8) that the 

value of e3 is less than 0.1 mT. 
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radicals. t-Butyl chloride is known to cause the following reactions 10) 

(5) Me3Sn* + t-BuCl --_$ Me3SnCl + t-Bu. 

(6) t-Bug + Me3SnH --_) t-BuH + Me3Sne 

It is found that the formation of Me3Sn-SnMe3 is greatly suppressed during 

irradiation of He3Sn-NEt2 with an excess of t-butyl chloride, the yield being 

less than 10 per cent. Instead of Me3Sn-SnMe3, Me3SnCl is formed. While the 

rates of disappearance of Me3Sn-NEt2 and formation of Et2NH and Me-CH=NEt are 

not changed significantly, the magnitude of the CIDNP patterns of Et2NH and 

Me-CH=NEt is increased by a factor of ca. 2, as expected. Furthermore, the 

hydride polarisation is not observed because of reaction (6). 

As the t-butyl radicals cause additional CIDNP effects, a more detailed 

analysis of the system Me3Sn-NEt2/t-butyl chloride will not be given here. 
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